×

Environment > Pollution Stats: compare key data on Austria & United Kingdom

Definitions

  • Carbon Dioxide per capita: Tons of Carbon Dioxide produced per capita in 1998 or latest available year. Carbon dioxide from energy use only. Excludes international marine bunkers.
  • Carbon dioxide 1999: 1999 total CO2 emissions from fossil-fuel burning, cement production, and gas flaring. Emissions are expressed in thousand metric tons of carbon (not CO2).
  • Climate change > Agrees climate change is caused by human activity: Percentage of population who responded yes when asked if they believed global warming was a result of human activities. In this survey, global warming refers to the current rise in earth's temperature and not climate change as a whole.
  • Climate change > Climate change awareness: Percentage of each country's population who claimed knowing "something" or a "great deal" about climate change when asked: "How much do you know about global warming or climate change?"
  • Climate change > Perceived as threat: Percentage of country's population that perceives climate change as a threat. Results are from a 2008 Gallop Poll.
  • Greenhouse gas emissions > Carbon dioxide (CO2) > CO2 emissions: Amount of carbon dioxide emissions by select Western countries. Amounts are by thousand metric tons. 
  • Greenhouse gas emissions > Carbon dioxide (CO2) > CO2 emissions per thousand people: Amount of carbon dioxide emissions by select Western countries. Amounts are by thousand metric tons. . Figures expressed per thousand people for the same year.
  • Greenhouse gas emissions > Emissions (CO2 equivalent): Carbon dioxide equivalent of all greenhouse gas emissions not including human-based land use, land use change and forestry. These numbers do not represent total greenhouse gas emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of greenhouse gases emitted. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change.
  • Greenhouse gas emissions > Methane (CH4) > Emissions (CO2 equivalent): Carbon dioxide equivalent of methane emissions not including human-based land use, land use change and forestry. These numbers do not represent total methane emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the amount of methane emitted, which is 21 times more CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change.
  • Greenhouse gas emissions > Methane (CH4) > Emissions (CO2 equivalent) per thousand people: Carbon dioxide equivalent of methane emissions not including human-based land use, land use change and forestry. These numbers do not represent total methane emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the amount of methane emitted, which is 21 times more CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change. Figures expressed per thousand people for the same year.
  • Greenhouse gas emissions > Sulphur hexafluoride (SF6) > Emissions (CO2 equivalent): Carbon dioxide equivalent of sulphur hexafluoride emissions over 100 years. These numbers do not represent total SF6 emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of SF6 emitted over 100 years. A 100 year time scale is used since SF6 has a shorter atmospheric lifetime than CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change.
  • Greenhouse gas emissions > Sulphur hexafluoride (SF6) > Emissions (CO2 equivalent) per million people: Carbon dioxide equivalent of sulphur hexafluoride emissions over 100 years. These numbers do not represent total SF6 emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of SF6 emitted over 100 years. A 100 year time scale is used since SF6 has a shorter atmospheric lifetime than CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change. Figures expressed per million people for the same year.
  • Organic water pollutant > BOD emissions > Kg per day: Organic water pollutant (BOD) emissions (kg per day). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Organic water pollutant > BOD emissions > Kg per day per worker: Organic water pollutant (BOD) emissions (kg per day per worker). Emissions per worker are total emissions of organic water pollutants divided by the number of industrial workers. Organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • PM10, country level > Micrograms per cubic meter: PM10, country level (micrograms per cubic meter). Particulate matter concentrations refer to fine suspended particulates less than 10 microns in diameter (PM10) that are capable of penetrating deep into the respiratory tract and causing significant health damage. Data for countries and aggregates for regions and income groups are urban-population weighted PM10 levels in residential areas of cities with more than 100,000 residents. The estimates represent the average annual exposure level of the average urban resident to outdoor particulate matter. The state of a country's technology and pollution controls is an important determinant of particulate matter concentrations.
  • Greenhouse gas emissions > Nitrous oxide (N2O) > Emissions (CO2 equivalent) per million people: Carbon dioxide equivalent of nitrous oxide emissions not including human-based land use, land use change and forestry. These numbers do not represent total NO2 emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of NO2 emitted, which is 310 times more CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change. Figures expressed per million people for the same year.
  • Carbon dioxide 1999 per 1000: 1999 total CO2 emissions from fossil-fuel burning, cement production, and gas flaring. Emissions are expressed in thousand metric tons of carbon (not CO2). Figures expressed per thousand population for the same year.
  • Water pollution, wood industry > % of total BOD emissions: Water pollution, wood industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: wood (33). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Greenhouse gas emissions > Perfluorcarbons (PFCs) > Emissions (CO2 equivalent): Carbon dioxide equivalent of perfluorocarbons emissions over 100 years. These numbers do not represent total PFCs emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of PFCs emitted over 100 years. A 100 year time scale is used since PFCs have a shorter atmospheric lifetime than CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change.
  • Water pollution, food industry > % of total BOD emissions: Water pollution, food industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: food and beverages (31). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Water pollution, other industry > % of total BOD emissions: Water pollution, other industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: other (38 and 39). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Water pollution, paper and pulp industry > % of total BOD emissions: Water pollution, paper and pulp industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: paper and pulp (34). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Nitrogen Oxides per capita: Kilogram weight of Nitrogen Oxides produced per capita in 1998 or latest available year.
  • Greenhouse gas emissions > Hydrofluorocarbons (HFCs) > Emissions (CO2 equivalent) per million people: Carbon dioxide equivalent of Hydrofluorocarbons (HFCs) emissions over a 100 year period. These numbers do not represent total HFCs emissions over 100 years, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of HFCs emitted over 100 years. A 100 year timeframe is used since HFCs have a shorter atmospheric lifetime than CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change. Figures expressed per million people for the same year.
  • Greenhouse gas emissions > Emissions (CO2 equivalent) per thousand people: Carbon dioxide equivalent of all greenhouse gas emissions not including human-based land use, land use change and forestry. These numbers do not represent total greenhouse gas emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of greenhouse gases emitted. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change. Figures expressed per thousand people for the same year.
  • Water pollution, textile industry > % of total BOD emissions: Water pollution, textile industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: textiles (32). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Greenhouse gas emissions > Nitrous oxide (N2O) > Emissions (CO2 equivalent): Carbon dioxide equivalent of nitrous oxide emissions not including human-based land use, land use change and forestry. These numbers do not represent total NO2 emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of NO2 emitted, which is 310 times more CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change.
  • Water pollution, chemical industry > % of total BOD emissions: Water pollution, chemical industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: chemicals (35). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Greenhouse gas emissions > Perfluorcarbons (PFCs) > Emissions (CO2 equivalent) per million people: Carbon dioxide equivalent of perfluorocarbons emissions over 100 years. These numbers do not represent total PFCs emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of PFCs emitted over 100 years. A 100 year time scale is used since PFCs have a shorter atmospheric lifetime than CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change. Figures expressed per million people for the same year.
  • Water pollution, clay and glass industry > % of total BOD emissions: Water pollution, clay and glass industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: stone, ceramics, and glass (36). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Greenhouse gas emissions > Hydrofluorocarbons (HFCs) > Emissions (CO2 equivalent): Carbon dioxide equivalent of Hydrofluorocarbons (HFCs) emissions over a 100 year period. These numbers do not represent total HFCs emissions over 100 years, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of HFCs emitted over 100 years. A 100 year timeframe is used since HFCs have a shorter atmospheric lifetime than CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change.
  • Greenhouse gas emissions > United Nations Framework Convention on Climate Change sign date: Signature.
  • Water pollution, metal industry > % of total BOD emissions: Water pollution, metal industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: primary metals (ISIC division 37). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Greenhouse gas emissions > Kyoto Protocol sign date: Signed.
STAT Austria United Kingdom HISTORY
Carbon Dioxide per capita 8
Ranked 20th.
9
Ranked 12th. 13% more than Austria
Carbon dioxide 1999 16,748
Ranked 42nd.
147,199
Ranked 6th. 9 times more than Austria
Climate change > Agrees climate change is caused by human activity 51%
Ranked 79th. 6% more than United Kingdom
48%
Ranked 91st.
Climate change > Climate change awareness 95%
Ranked 11th.
97%
Ranked 4th. 2% more than Austria
Climate change > Perceived as threat 54%
Ranked 46th.
69%
Ranked 20th. 28% more than Austria
Greenhouse gas emissions > Carbon dioxide (CO2) > CO2 emissions 72,290.47
Ranked 19th.
505,727.86
Ranked 6th. 7 times more than Austria

Greenhouse gas emissions > Carbon dioxide (CO2) > CO2 emissions per thousand people 8.62
Ranked 19th. 6% more than United Kingdom
8.12
Ranked 20th.

Greenhouse gas emissions > Emissions (CO2 equivalent) 84,593.94
Ranked 21st.
594,021.5
Ranked 7th. 7 times more than Austria

Greenhouse gas emissions > Methane (CH4) > Emissions (CO2 equivalent) 5,574.51
Ranked 26th.
41,418.31
Ranked 10th. 7 times more than Austria

Greenhouse gas emissions > Methane (CH4) > Emissions (CO2 equivalent) per thousand people 0.664
Ranked 33th.
0.665
Ranked 32nd. About the same as Austria

Greenhouse gas emissions > Sulphur hexafluoride (SF6) > Emissions (CO2 equivalent) 345.01
Ranked 12th.
689.99
Ranked 6th. Twice as much as Austria

Greenhouse gas emissions > Sulphur hexafluoride (SF6) > Emissions (CO2 equivalent) per million people 41.12
Ranked 2nd. 4 times more than United Kingdom
11.08
Ranked 13th.

Organic water pollutant > BOD emissions > Kg per day 84,397.79
Ranked 31st.
521,716.1
Ranked 9th. 6 times more than Austria

Organic water pollutant > BOD emissions > Kg per day per worker 0.143
Ranked 51st.
0.167
Ranked 35th. 17% more than Austria

PM10, country level > Micrograms per cubic meter 27.39
Ranked 93th. 2 times more than United Kingdom
12.78
Ranked 163th.

Greenhouse gas emissions > Nitrous oxide (N2O) > Emissions (CO2 equivalent) per million people 614.26
Ranked 29th. 9% more than United Kingdom
561.98
Ranked 33th.

Carbon dioxide 1999 per 1000 2.1
Ranked 38th.
2.51
Ranked 26th. 20% more than Austria
Water pollution, wood industry > % of total BOD emissions 6.02%
Ranked 13th. 2 times more than United Kingdom
2.47%
Ranked 40th.

Greenhouse gas emissions > Perfluorcarbons (PFCs) > Emissions (CO2 equivalent) 69.85
Ranked 19th.
220.47
Ranked 11th. 3 times more than Austria

Water pollution, food industry > % of total BOD emissions 12.24%
Ranked 50th.
14.87%
Ranked 47th. 21% more than Austria

Water pollution, other industry > % of total BOD emissions 49.49%
Ranked 10th. 7% more than United Kingdom
46.14%
Ranked 18th.

Water pollution, paper and pulp industry > % of total BOD emissions 7.11%
Ranked 18th.
12.47%
Ranked 5th. 75% more than Austria

Nitrogen Oxides per capita 21
Ranked 24th.
35
Ranked 14th. 67% more than Austria
Greenhouse gas emissions > Hydrofluorocarbons (HFCs) > Emissions (CO2 equivalent) per million people 138.34
Ranked 22nd.
229.87
Ranked 7th. 66% more than Austria

Greenhouse gas emissions > Emissions (CO2 equivalent) per thousand people 10.08
Ranked 19th. 6% more than United Kingdom
9.54
Ranked 21st.

Water pollution, textile industry > % of total BOD emissions 4.28%
Ranked 54th. About the same as United Kingdom
4.26%
Ranked 59th.

Greenhouse gas emissions > Nitrous oxide (N2O) > Emissions (CO2 equivalent) 5,153.46
Ranked 27th.
34,995.46
Ranked 7th. 7 times more than Austria

Water pollution, chemical industry > % of total BOD emissions 9.31%
Ranked 37th.
13.54%
Ranked 11th. 45% more than Austria

Greenhouse gas emissions > Perfluorcarbons (PFCs) > Emissions (CO2 equivalent) per million people 8.33
Ranked 13th. 2 times more than United Kingdom
3.54
Ranked 23th.

Water pollution, clay and glass industry > % of total BOD emissions 5.84%
Ranked 29th. 64% more than United Kingdom
3.56%
Ranked 55th.

Greenhouse gas emissions > Hydrofluorocarbons (HFCs) > Emissions (CO2 equivalent) 1,160.63
Ranked 20th.
14,314.07
Ranked 5th. 12 times more than Austria

Greenhouse gas emissions > United Nations Framework Convention on Climate Change sign date June 8, 1992 June 12, 1992
Water pollution, metal industry > % of total BOD emissions 5.71%
Ranked 13th. 2 times more than United Kingdom
2.7%
Ranked 38th.

Greenhouse gas emissions > Kyoto Protocol sign date 24 September 1998 29 April 1998

SOURCES: Organization for Economic Cooperation and Development, Paris, France, OECD Environmental Data Compendium; Gregg Marland, Tom Boden, and Bob Andres, University of North Dakota, via net publication; Wikipedia: Climate change opinion by country; United Nations Statistics Division. Source tables; United Nations Statistics Division. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; United Nations Framework Convention on Climate Change. Source tables; United Nations Framework Convention on Climate Change. Source tables; United Nations Framework Convention on Climate Change. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; United Nations Framework Convention on Climate Change. Source tables; United Nations Framework Convention on Climate Change. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; Industrial Pollution in Economic Development: Kuznets Revisited; World Bank and UNIDO's industry database.; World Bank, Development Research Group and Environment Department; United Nations Framework Convention on Climate Change. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; Gregg Marland, Tom Boden, and Bob Andres, University of North Dakota, via net publication. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; United Nations Framework Convention on Climate Change. Source tables; United Nations Framework Convention on Climate Change. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; United Nations Framework Convention on Climate Change. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; United Nations Framework Convention on Climate Change. Source tables; United Nations Framework Convention on Climate Change. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; United Nations Framework Convention on Climate Change. Source tables; Wikipedia: List of parties to the United Nations Framework Convention on Climate Change (List of parties) (Parties & Observers , UNFCCC, 1 June 2011); Wikipedia: List of parties to the Kyoto Protocol (Parties)

Citation

Adblocker detected! Please consider reading this notice.

We've detected that you are using AdBlock Plus or some other adblocking software which is preventing the page from fully loading.

We don't have any banner, Flash, animation, obnoxious sound, or popup ad. We do not implement these annoying types of ads!

We need money to operate the site, and almost all of it comes from our online advertising.

Please add www.nationmaster.com to your ad blocking whitelist or disable your adblocking software.

×