×

Environment > Pollution Stats: compare key data on Poland & Ukraine

Compare vs for  

Definitions

  • Carbon Dioxide from fossil fuels 2000: Includes carbon dioxide emissions from the consumption of petroleum, natural gas, and coal, and the flaring of natural gas.
  • Carbon Dioxide from fossil fuels 2000 per million: Includes carbon dioxide emissions from the consumption of petroleum, natural gas, and coal, and the flaring of natural gas. Figures expressed per million population for the same year.
  • Climate change > Agrees climate change is caused by human activity: Percentage of population who responded yes when asked if they believed global warming was a result of human activities. In this survey, global warming refers to the current rise in earth's temperature and not climate change as a whole.
  • Climate change > Climate change awareness: Percentage of each country's population who claimed knowing "something" or a "great deal" about climate change when asked: "How much do you know about global warming or climate change?"
  • Greenhouse gas emissions > Carbon dioxide (CO2) > CO2 emissions: Amount of carbon dioxide emissions by select Western countries. Amounts are by thousand metric tons. 
  • Greenhouse gas emissions > Carbon dioxide (CO2) > CO2 emissions per thousand people: Amount of carbon dioxide emissions by select Western countries. Amounts are by thousand metric tons. . Figures expressed per thousand people for the same year.
  • Greenhouse gas emissions > Emissions (CO2 equivalent): Carbon dioxide equivalent of all greenhouse gas emissions not including human-based land use, land use change and forestry. These numbers do not represent total greenhouse gas emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of greenhouse gases emitted. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change.
  • Greenhouse gas emissions > Methane (CH4) > Emissions (CO2 equivalent): Carbon dioxide equivalent of methane emissions not including human-based land use, land use change and forestry. These numbers do not represent total methane emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the amount of methane emitted, which is 21 times more CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change.
  • Greenhouse gas emissions > Methane (CH4) > Emissions (CO2 equivalent) per thousand people: Carbon dioxide equivalent of methane emissions not including human-based land use, land use change and forestry. These numbers do not represent total methane emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the amount of methane emitted, which is 21 times more CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change. Figures expressed per thousand people for the same year.
  • Greenhouse gas emissions > Sulphur hexafluoride (SF6) > Emissions (CO2 equivalent): Carbon dioxide equivalent of sulphur hexafluoride emissions over 100 years. These numbers do not represent total SF6 emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of SF6 emitted over 100 years. A 100 year time scale is used since SF6 has a shorter atmospheric lifetime than CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change.
  • Greenhouse gas emissions > Sulphur hexafluoride (SF6) > Emissions (CO2 equivalent) per million people: Carbon dioxide equivalent of sulphur hexafluoride emissions over 100 years. These numbers do not represent total SF6 emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of SF6 emitted over 100 years. A 100 year time scale is used since SF6 has a shorter atmospheric lifetime than CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change. Figures expressed per million people for the same year.
  • Organic water pollutant > BOD emissions > Kg per day: Organic water pollutant (BOD) emissions (kg per day). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Ozone depleting substance consumption: Consumption of all Ozone-Depleting Substances in ODP metric tons.
  • Ozone depleting substance consumption per million people: Consumption of all Ozone-Depleting Substances in ODP metric tons. Figures expressed per million people for the same year.
  • PM10, country level > Micrograms per cubic meter: PM10, country level (micrograms per cubic meter). Particulate matter concentrations refer to fine suspended particulates less than 10 microns in diameter (PM10) that are capable of penetrating deep into the respiratory tract and causing significant health damage. Data for countries and aggregates for regions and income groups are urban-population weighted PM10 levels in residential areas of cities with more than 100,000 residents. The estimates represent the average annual exposure level of the average urban resident to outdoor particulate matter. The state of a country's technology and pollution controls is an important determinant of particulate matter concentrations.
  • Climate change > Perceived as threat: Percentage of country's population that perceives climate change as a threat. Results are from a 2008 Gallop Poll.
  • Organic water pollutant > BOD emissions > Kg per day per worker: Organic water pollutant (BOD) emissions (kg per day per worker). Emissions per worker are total emissions of organic water pollutants divided by the number of industrial workers. Organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Carbon dioxide 1999: 1999 total CO2 emissions from fossil-fuel burning, cement production, and gas flaring. Emissions are expressed in thousand metric tons of carbon (not CO2).
  • Greenhouse gas emissions > Nitrous oxide (N2O) > Emissions (CO2 equivalent) per million people: Carbon dioxide equivalent of nitrous oxide emissions not including human-based land use, land use change and forestry. These numbers do not represent total NO2 emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of NO2 emitted, which is 310 times more CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change. Figures expressed per million people for the same year.
  • Carbon dioxide 1999 per 1000: 1999 total CO2 emissions from fossil-fuel burning, cement production, and gas flaring. Emissions are expressed in thousand metric tons of carbon (not CO2). Figures expressed per thousand population for the same year.
  • Carbon Dioxide from fossil fuels 2000 > Per $ GDP: Includes carbon dioxide emissions from the consumption of petroleum, natural gas, and coal, and the flaring of natural gas. Per $ GDP figures expressed per $100 million of Gross Domestic Product.
  • Water pollution, wood industry > % of total BOD emissions: Water pollution, wood industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: wood (33). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Greenhouse gas emissions > Perfluorcarbons (PFCs) > Emissions (CO2 equivalent): Carbon dioxide equivalent of perfluorocarbons emissions over 100 years. These numbers do not represent total PFCs emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of PFCs emitted over 100 years. A 100 year time scale is used since PFCs have a shorter atmospheric lifetime than CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change.
  • Water pollution, food industry > % of total BOD emissions: Water pollution, food industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: food and beverages (31). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Water pollution, other industry > % of total BOD emissions: Water pollution, other industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: other (38 and 39). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Water pollution, paper and pulp industry > % of total BOD emissions: Water pollution, paper and pulp industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: paper and pulp (34). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Greenhouse gas emissions > Hydrofluorocarbons (HFCs) > Emissions (CO2 equivalent) per million people: Carbon dioxide equivalent of Hydrofluorocarbons (HFCs) emissions over a 100 year period. These numbers do not represent total HFCs emissions over 100 years, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of HFCs emitted over 100 years. A 100 year timeframe is used since HFCs have a shorter atmospheric lifetime than CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change. Figures expressed per million people for the same year.
  • Greenhouse gas emissions > Emissions (CO2 equivalent) per thousand people: Carbon dioxide equivalent of all greenhouse gas emissions not including human-based land use, land use change and forestry. These numbers do not represent total greenhouse gas emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of greenhouse gases emitted. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change. Figures expressed per thousand people for the same year.
  • Water pollution, textile industry > % of total BOD emissions: Water pollution, textile industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: textiles (32). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Greenhouse gas emissions > Nitrous oxide (N2O) > Emissions (CO2 equivalent): Carbon dioxide equivalent of nitrous oxide emissions not including human-based land use, land use change and forestry. These numbers do not represent total NO2 emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of NO2 emitted, which is 310 times more CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change.
  • Water pollution, chemical industry > % of total BOD emissions: Water pollution, chemical industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: chemicals (35). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Greenhouse gas emissions > Perfluorcarbons (PFCs) > Emissions (CO2 equivalent) per million people: Carbon dioxide equivalent of perfluorocarbons emissions over 100 years. These numbers do not represent total PFCs emissions, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of PFCs emitted over 100 years. A 100 year time scale is used since PFCs have a shorter atmospheric lifetime than CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change. Figures expressed per million people for the same year.
  • Water pollution, clay and glass industry > % of total BOD emissions: Water pollution, clay and glass industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: stone, ceramics, and glass (36). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Greenhouse gas emissions > Hydrofluorocarbons (HFCs) > Emissions (CO2 equivalent): Carbon dioxide equivalent of Hydrofluorocarbons (HFCs) emissions over a 100 year period. These numbers do not represent total HFCs emissions over 100 years, but rather the total amount of CO2 that would have to be emitted to have the same global warming potential (GWP) as the total amount of HFCs emitted over 100 years. A 100 year timeframe is used since HFCs have a shorter atmospheric lifetime than CO2. The GWP of a greenhouse gas is useful in determining a country's overall impact on climate change.
  • Greenhouse gas emissions > United Nations Framework Convention on Climate Change sign date: Signature.
  • Water pollution, metal industry > % of total BOD emissions: Water pollution, metal industry (% of total BOD emissions). Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: primary metals (ISIC division 37). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Greenhouse gas emissions > Kyoto Protocol sign date: Signed.
STAT Poland Ukraine HISTORY
Carbon Dioxide from fossil fuels 2000 81
Ranked 18th.
104
Ranked 13th. 28% more than Poland
Carbon Dioxide from fossil fuels 2000 per million 2.11
Ranked 13th.
2.11
Ranked 12th. About the same as Poland
Climate change > Agrees climate change is caused by human activity 58%
Ranked 56th. 14% more than Ukraine
51%
Ranked 80th.
Climate change > Climate change awareness 84%
Ranked 33th. 6% more than Ukraine
79%
Ranked 41st.
Greenhouse gas emissions > Carbon dioxide (CO2) > CO2 emissions 332,066.81
Ranked 10th. 15% more than Ukraine
289,707.97
Ranked 12th.

Greenhouse gas emissions > Carbon dioxide (CO2) > CO2 emissions per thousand people 8.7
Ranked 17th. 38% more than Ukraine
6.32
Ranked 27th.

Greenhouse gas emissions > Emissions (CO2 equivalent) 400,865.39
Ranked 12th. 5% more than Ukraine
383,181.58
Ranked 13th.

Greenhouse gas emissions > Methane (CH4) > Emissions (CO2 equivalent) 34,976.14
Ranked 13th.
63,865.23
Ranked 6th. 83% more than Poland

Greenhouse gas emissions > Methane (CH4) > Emissions (CO2 equivalent) per thousand people 0.916
Ranked 19th.
1.39
Ranked 9th. 52% more than Poland

Greenhouse gas emissions > Sulphur hexafluoride (SF6) > Emissions (CO2 equivalent) 37.07
Ranked 21st. 4 times more than Ukraine
10.18
Ranked 32nd.

Greenhouse gas emissions > Sulphur hexafluoride (SF6) > Emissions (CO2 equivalent) per million people 0.971
Ranked 36th. 4 times more than Ukraine
0.222
Ranked 42nd.

Organic water pollutant > BOD emissions > Kg per day 359,696.7
Ranked 12th.
498,167.6
Ranked 4th. 38% more than Poland

Ozone depleting substance consumption 261
Ranked 47th. 3 times more than Ukraine
93.29
Ranked 39th.

Ozone depleting substance consumption per million people 6.83
Ranked 105th. 3 times more than Ukraine
2.04
Ranked 82nd.

PM10, country level > Micrograms per cubic meter 32.93
Ranked 72nd. 2 times more than Ukraine
15.42
Ranked 150th.

Climate change > Perceived as threat 54%
Ranked 45th. 4% more than Ukraine
52%
Ranked 51st.
Organic water pollutant > BOD emissions > Kg per day per worker 0.159
Ranked 40th.
0.191
Ranked 12th. 20% more than Poland

Carbon dioxide 1999 85,805
Ranked 15th.
102,158
Ranked 11th. 19% more than Poland
Greenhouse gas emissions > Nitrous oxide (N2O) > Emissions (CO2 equivalent) per million people 705.44
Ranked 20th. 12% more than Ukraine
630.41
Ranked 26th.

Carbon dioxide 1999 per 1000 2.22
Ranked 33th. 8% more than Ukraine
2.06
Ranked 41st.
Carbon Dioxide from fossil fuels 2000 > Per $ GDP 0.0175 per $100 million
Ranked 5th.
0.0348 per $100 million
Ranked 1st. 99% more than Poland
Water pollution, wood industry > % of total BOD emissions 4.91%
Ranked 20th. 2 times more than Ukraine
2.08%
Ranked 19th.

Greenhouse gas emissions > Perfluorcarbons (PFCs) > Emissions (CO2 equivalent) 86.4
Ranked 17th. 4 times more than Ukraine
22.98
Ranked 24th.

Water pollution, food industry > % of total BOD emissions 18.1%
Ranked 28th.
19.65%
Ranked 15th. 9% more than Poland

Water pollution, other industry > % of total BOD emissions 41.51%
Ranked 20th. 14% more than Ukraine
36.46%
Ranked 10th.

Water pollution, paper and pulp industry > % of total BOD emissions 5.1%
Ranked 35th. 19% more than Ukraine
4.27%
Ranked 20th.

Greenhouse gas emissions > Hydrofluorocarbons (HFCs) > Emissions (CO2 equivalent) per million people 177.11
Ranked 12th. 12 times more than Ukraine
14.35
Ranked 41st.

Greenhouse gas emissions > Emissions (CO2 equivalent) per thousand people 10.5
Ranked 17th. 26% more than Ukraine
8.35
Ranked 26th.

Water pollution, textile industry > % of total BOD emissions 10.32%
Ranked 36th. 83% more than Ukraine
5.64%
Ranked 26th.

Greenhouse gas emissions > Nitrous oxide (N2O) > Emissions (CO2 equivalent) 26,936.45
Ranked 11th.
28,917.18
Ranked 8th. 7% more than Poland

Water pollution, chemical industry > % of total BOD emissions 11.3%
Ranked 24th. 1% more than Ukraine
11.19%
Ranked 8th.

Greenhouse gas emissions > Perfluorcarbons (PFCs) > Emissions (CO2 equivalent) per million people 2.26
Ranked 26th. 5 times more than Ukraine
0.501
Ranked 28th.

Water pollution, clay and glass industry > % of total BOD emissions 5.5%
Ranked 30th.
6.78%
Ranked 13th. 23% more than Poland

Greenhouse gas emissions > Hydrofluorocarbons (HFCs) > Emissions (CO2 equivalent) 6,762.52
Ranked 11th. 10 times more than Ukraine
658.05
Ranked 28th.

Greenhouse gas emissions > United Nations Framework Convention on Climate Change sign date June 5, 1992 June 11, 1992
Water pollution, metal industry > % of total BOD emissions 3.27%
Ranked 29th.
13.93%
Ranked 3rd. 4 times more than Poland

Greenhouse gas emissions > Kyoto Protocol sign date 15 July 1998 15 March 1999

SOURCES: U.S. Energy Information Administration, International Energy Annual, 2002, and International Energy Outlook, 2001; U.S. Energy Information Administration, International Energy Annual, 2002, and International Energy Outlook, 2001. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; Wikipedia: Climate change opinion by country; United Nations Statistics Division. Source tables; United Nations Statistics Division. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; United Nations Framework Convention on Climate Change. Source tables; United Nations Framework Convention on Climate Change. Source tables; United Nations Framework Convention on Climate Change. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; United Nations Framework Convention on Climate Change. Source tables; United Nations Framework Convention on Climate Change. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; Industrial Pollution in Economic Development: Kuznets Revisited; United Nations Statistics Division. Source tables; United Nations Statistics Division. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; World Bank, Development Research Group and Environment Department; World Bank and UNIDO's industry database.; Gregg Marland, Tom Boden, and Bob Andres, University of North Dakota, via net publication; United Nations Framework Convention on Climate Change. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; Gregg Marland, Tom Boden, and Bob Andres, University of North Dakota, via net publication. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; United Nations Framework Convention on Climate Change. Source tables; United Nations Framework Convention on Climate Change. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; United Nations Framework Convention on Climate Change. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; United Nations Framework Convention on Climate Change. Source tables; United Nations Framework Convention on Climate Change. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; United Nations Framework Convention on Climate Change. Source tables; Wikipedia: List of parties to the United Nations Framework Convention on Climate Change (List of parties) (Parties & Observers , UNFCCC, 1 June 2011); Wikipedia: List of parties to the Kyoto Protocol (Parties)

Citation

Adblocker detected! Please consider reading this notice.

We've detected that you are using AdBlock Plus or some other adblocking software which is preventing the page from fully loading.

We don't have any banner, Flash, animation, obnoxious sound, or popup ad. We do not implement these annoying types of ads!

We need money to operate the site, and almost all of it comes from our online advertising.

Please add www.nationmaster.com to your ad blocking whitelist or disable your adblocking software.

×