×

Environment Stats: compare key data on Burma & Iran

Compare vs for  

Definitions

  • Climate change > CO2 emissions from electricity and heat production, total > Million metric tons: CO2 emissions from electricity and heat production, total (million metric tons). CO2 emissions from electricity and heat production is the sum of three IEA categories of CO2 emissions: (1) Main Activity Producer Electricity and Heat which contains the sum of emissions from main activity producer electricity generation, combined heat and power generation and heat plants. Main activity producers (formerly known as public utilities) are defined as those undertakings whose primary activity is to supply the public. They may be publicly or privately owned. This corresponds to IPCC Source/Sink Category 1 A 1 a. For the CO2 emissions from fuel combustion (summary) file, emissions from own on-site use of fuel in power plants (EPOWERPLT) are also included. (2) Unallocated Autoproducers which contains the emissions from the generation of electricity and/or heat by autoproducers. Autoproducers are defined as undertakings that generate electricity and/or heat, wholly or partly for their own use as an activity which supports their primary activity. They may be privately or publicly owned. In the 1996 IPCC Guidelines, these emissions would normally be distributed between industry, transport and "other" sectors. (3) Other Energy Industries contains emissions from fuel combusted in petroleum refineries, for the manufacture of solid fuels, coal mining, oil and gas extraction and other energy-producing industries. This corresponds to the IPCC Source/Sink Categories 1 A 1 b and 1 A 1 c. According to the 1996 IPCC Guidelines, emissions from coke inputs to blast furnaces can either be counted here or in the Industrial Processes source/sink category. Within detailed sectoral calculations, certain non-energy processes can be distinguished. In the reduction of iron in a blast furnace through the combustion of coke, the primary purpose of the coke oxidation is to produce pig iron and the emissions can be considered as an industrial process. Care must be taken not to double count these emissions in both Energy and Industrial Processes. In the IEA estimations, these emissions have been included in this category.
  • Climate change > CO2 emissions from electricity and heat production, total > Million metric tons per million: CO2 emissions from electricity and heat production, total (million metric tons). CO2 emissions from electricity and heat production is the sum of three IEA categories of CO2 emissions: (1) Main Activity Producer Electricity and Heat which contains the sum of emissions from main activity producer electricity generation, combined heat and power generation and heat plants. Main activity producers (formerly known as public utilities) are defined as those undertakings whose primary activity is to supply the public. They may be publicly or privately owned. This corresponds to IPCC Source/Sink Category 1 A 1 a. For the CO2 emissions from fuel combustion (summary) file, emissions from own on-site use of fuel in power plants (EPOWERPLT) are also included. (2) Unallocated Autoproducers which contains the emissions from the generation of electricity and/or heat by autoproducers. Autoproducers are defined as undertakings that generate electricity and/or heat, wholly or partly for their own use as an activity which supports their primary activity. They may be privately or publicly owned. In the 1996 IPCC Guidelines, these emissions would normally be distributed between industry, transport and "other" sectors. (3) Other Energy Industries contains emissions from fuel combusted in petroleum refineries, for the manufacture of solid fuels, coal mining, oil and gas extraction and other energy-producing industries. This corresponds to the IPCC Source/Sink Categories 1 A 1 b and 1 A 1 c. According to the 1996 IPCC Guidelines, emissions from coke inputs to blast furnaces can either be counted here or in the Industrial Processes source/sink category. Within detailed sectoral calculations, certain non-energy processes can be distinguished. In the reduction of iron in a blast furnace through the combustion of coke, the primary purpose of the coke oxidation is to produce pig iron and the emissions can be considered as an industrial process. Care must be taken not to double count these emissions in both Energy and Industrial Processes. In the IEA estimations, these emissions have been included in this category. Figures expressed per million population for the same year.
  • Current issues: This entry lists the most pressing and important environmental problems. The following terms and abbreviations are used throughout the entry:
  • Ecological footprint: Ecological footprint per capita
    Units: Hectares per Person
  • Forest area > Sq. km > Per capita: Forest area is land under natural or planted stands of trees, whether productive or not. Per capita figures expressed per 1,000 population.
  • Marine fish catch: Total marine fish catch
    Units: Metric Tons
  • Marine fish catch per 1000: Total marine fish catch
    Units: Metric Tons. Figures expressed per thousand population for the same year.
  • Pollution perceptions > Air pollution: Air Pollution. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "How satisfied are you with the quality of air in this city?". The higher the value, the more survey respondents believe it is high in their country.
  • Pollution perceptions > Air quality: Air quality. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "How satisfied are you with the quality of air in this city?". The higher the value, the more survey respondents believe it is high in their country.
  • Pollution perceptions > Clean water: Water Quality. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "Are you concerned with the water pollution in this city?". The higher the value, the more survey respondents believe it is high in their country.
  • Pollution perceptions > Drinking water pollution: Drinking Water Pollution and Inaccessibility. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "How do you find quality and the accessibility of drinking water?". The higher the value, the more survey respondents believe it is high in their country.
  • Pollution perceptions > Water pollution: Water Pollution. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "Are you concerned with the water pollution in this city?". The higher the value, the more survey respondents believe it is high in their country.
  • Proportion of land area under protection: Terrestrial areas protected to total surface area, percentage.
  • Water > Severe water stress: Percent of country's territory under severe water stress
    Units: Percent of Land Area
    Units: This data is derived from the WaterGap 2.1 gridded hydrological model developed by the Center for Environmental Systems Research, University of Kassel, Germany. The modellers derived, for each country, grid cell by grid cell estimates of whether the water consumption exceeds 40 percent of the water available in that particular grid cell. These were then converted to land area equivalents in order to calculate the percentage of the territory under severe water stress.
  • CFC > Consumption: CFC consumption
    Units: Ozone Depletion Potential (ODP) Tons (Metric Tons x ODP)
    Units: The indicator was obtained by multiplying the Total CFCs emissions (metric tons per ozone depletion potential) with the Per capita CFCs emissions (obtained by dividing the total CFCs emissions by the population in 1997). In calculating the ESI, the base-10 logarithm of this variable was used.
  • Pollution perceptions > Noise and light pollution: Noise and Light Pollution. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "How concerned are you with noise pollution and light during the night in this city?". The higher the value, the more survey respondents believe it is high in their country.
  • Biodiversity > Mammal species, threatened: Mammal species, threatened. Mammal species are mammals excluding whales and porpoises. Threatened species are the number of species classified by the IUCN as endangered, vulnerable, rare, indeterminate, out of danger, or insufficiently known.
  • Pollution perceptions > Drinking water quality: Drinking Water Quality and Accessibility. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "How do you find quality and the accessibility of drinking water?". The higher the value, the more survey respondents believe it is high in their country.
  • CO2 emissions > Kt: Carbon dioxide emissions are those stemming from the burning of fossil fuels and the manufacture of cement. They include carbon dioxide produced during consumption of solid, liquid, and gas fuels and gas flaring.
  • Pollution perceptions > Pollution index: Pollution Index is an estimation of the overall pollution in the city. The biggest weight is given to air pollution, than to water pollution/accessibility, two main pollution factors. Small weight is given to other pollution types.
  • Water > Drinking water > Population with improved drinking water sources > Urban and rural: Proportion of the population using improved drinking water sources, total.
  • National parks > Number of parks: Number of parks.

    No date was available from the Wikipedia article, so we used the date of retrieval.

  • Climate change > CO2 emissions > Metric tons per capita: CO2 emissions (metric tons per capita). Carbon dioxide emissions are those stemming from the burning of fossil fuels and the manufacture of cement. They include carbon dioxide produced during consumption of solid, liquid, and gas fuels and gas flaring.
  • Biodiversity > Bird species, threatened: Bird species, threatened. Birds are listed for countries included within their breeding or wintering ranges. Threatened species are the number of species classified by the IUCN as endangered, vulnerable, rare, indeterminate, out of danger, or insufficiently known.
  • Carbon efficiency: Carbon economic efficiency (CO2 emissions per dollar GDP)
    Units: Metric Tons/US Dollar GDP
  • CO2 emissions > Kt per 1000: Carbon dioxide emissions are those stemming from the burning of fossil fuels and the manufacture of cement. They include carbon dioxide produced during consumption of solid, liquid, and gas fuels and gas flaring. Figures expressed per thousand population for the same year.
  • Total renewable water resources per million: . Figures expressed per million population for the same year.
  • SO2 emissions per populated area: SO2 emissions per populated land area
    Units: 1000 Metric Tons/Sq. Km. of Populated Land Area
    Units: We obtained the total emissions for each country by summarizing emissions data, originally available as a grid map with 1 degree x 1 degree cells. Air pollution is generally greatest in densely populated areas. To take this into account, we used the Gridded Population of the World dataset available from CIESIN and calculated the total land area in each country inhabited with a population density of greater than 5 persons per sq. km. We then used this land area as a denominator for the emissions data.
  • Biodiversity > Fish species, threatened: Fish species, threatened. Fish species are based on Froese, R. and Pauly, D. (eds). 2008. Threatened species are the number of species classified by the IUCN as endangered, vulnerable, rare, indeterminate, out of danger, or insufficiently known.
  • Climate change > CO2 emissions > Kt: CO2 emissions (kt). Carbon dioxide emissions are those stemming from the burning of fossil fuels and the manufacture of cement. They include carbon dioxide produced during consumption of solid, liquid, and gas fuels and gas flaring.
  • CO2 emissions > Kt > Per capita: Carbon dioxide emissions are those stemming from the burning of fossil fuels and the manufacture of cement. They include carbon dioxide produced during consumption of solid, liquid, and gas fuels and gas flaring. Per capita figures expressed per 1,000 population.
  • Pollution perceptions > Waste management dissatisfaction: Dissatisfaction with Garbage Disposal. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "How satisfied are you with a garbage disposal in the city?". The higher the value, the more survey respondents believe it is high in their country.
  • Water > Percent of water resources used: Proportion of total water resources used, percentage.
  • Pollution > Ozone depleting substance consumption: Consumption of all Ozone-Depleting Substances in ODP metric tons.
  • NOx emissions per populated area: NOx emissions per populated land area
    Units: 1000 Metric Tons/Sq. Km. of Populated Land Area
    Units: We obtained the total emissions for each country by summarizing emissions data, originally available as a grid map with 1 degree x 1 degree cells. Air pollution is generally greatest in densely populated areas. To take this into account, we used the Gridded Population of the World dataset available from CIESIN and calculated the total land area in each country inhabited with a population density of greater than 5 persons per sq. km. We then used this land area as a denominator for the emissions data.
  • Biodiversity richness: Caldecott, J.O., M.D. Jenkins, T. Johnson and B. Groombridge. 1994. Priorities for Conserving Global Species Richness and Endemism. In World Conservation Monitoring Centre, Biodiversity Series No. 3 (N. Mark Collins, ed.) pp. 17. World Conservation Press, Cambridge, UK.
  • Water > Dissolved oxygen concentration: Dissolved oxygen concentration
    Units: Milligrams/Liter
    Units: The country values represent averages of the station-level values for the three year time period 1994-96, exceptwhere data were only available for an earlier time period (1988-1993). The number of stations per country varies depending on country size; number of bodies of water; and level of participation in the GEMS monitoring system. The data from "The Wellbeing of Nations" included a smaller subset of stations representing outfalls of major watersheds. An analysis of a sample of countries with numerous stations found that the data for stations in the subset is broadly comparable to the data for all GEMS stations in those countries.
  • Climate change > CO2 emissions > Kt per 1000: CO2 emissions (kt). Carbon dioxide emissions are those stemming from the burning of fossil fuels and the manufacture of cement. They include carbon dioxide produced during consumption of solid, liquid, and gas fuels and gas flaring. Figures expressed per thousand population for the same year.
  • Forest area > Sq. km: Forest area is land under natural or planted stands of trees, whether productive or not.
  • Sanitation > Population with improved sanitation > Urban and rural: Proportion of the population using improved sanitation facilities, total.
  • Pollution perceptions > Clean, tidy cities: Clean and Tidy. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "Do you find city clean and tidy?". The higher the value, the more survey respondents believe it is high in their country.
  • Pollution > Ozone depleting substance consumption per million people: Consumption of all Ozone-Depleting Substances in ODP metric tons. Figures expressed per million people for the same year.
  • Water > Availability: Water availability per capita (1961-1990 (avg.))
    Units: Thousands Cubic Meters/Person
    Units: This variable measures internal renewable water (average annual surface runoff and groundwater recharge generated from endogenous precipitation)
  • Water > Drinking water > Population with improved drinking water sources > Rural: Proportion of the population using improved drinking water sources, rural.
  • Biodiversity > Plant species > Higher, threatened: Plant species (higher), threatened. Higher plants are native vascular plant species. Threatened species are the number of species classified by the IUCN as endangered, vulnerable, rare, indeterminate, out of danger, or insufficiently known.
  • Threatened species: Number of Threatened Species (1990-99)
  • Pollution perceptions > Urban comfort > Low pollution: Comfortable to Spend Time in the City. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "Are you feeling comfortable to spend time in the city because of the pollution?". The higher the value, the more survey respondents believe it is high in their country.
  • CFC > Consumption per 1000: CFC consumption
    Units: Ozone Depletion Potential (ODP) Tons (Metric Tons x ODP)
    Units: The indicator was obtained by multiplying the Total CFCs emissions (metric tons per ozone depletion potential) with the Per capita CFCs emissions (obtained by dividing the total CFCs emissions by the population in 1997). In calculating the ESI, the base-10 logarithm of this variable was used. Figures expressed per thousand population for the same year.
  • Protected area: Environmentally protected area (1997)
  • Biodiversity > GEF benefits index for biodiversity > 0 = no biodiversity potential to 100 = maximum: GEF benefits index for biodiversity (0 = no biodiversity potential to 100 = maximum). GEF benefits index for biodiversity is a composite index of relative biodiversity potential for each country based on the species represented in each country, their threat status, and the diversity of habitat types in each country. The index has been normalized so that values run from 0 (no biodiversity potential) to 100 (maximum biodiversity potential).
  • Pollution perceptions > Dirty, untidy cities: Dirty and Untidy. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "Do you find city clean and tidy?". The higher the value, the more survey respondents believe it is high in their country.
  • Pollution perceptions > Free of noise and light pollution: Quiet and No Problem with Night Lights. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "How concerned are you with noise pollution and light during the night in this city?". The higher the value, the more survey respondents believe it is high in their country.
  • Acidification: Percentage of country with acidification excedence
    Units: Percent of Land Area
    Units: From a map of acidification excedence, all areas at risk within each country were added together in order to calculate the percentage of the entire country at risk of excedence. See pages 21-22 of the 2001 ESI report for more details on how the acidification excedence map was produced.
  • Pollution > PM10, country level > Micrograms per cubic meter: PM10, country level (micrograms per cubic meter). Particulate matter concentrations refer to fine suspended particulates less than 10 microns in diameter (PM10) that are capable of penetrating deep into the respiratory tract and causing significant health damage. Data for countries and aggregates for regions and income groups are urban-population weighted PM10 levels in residential areas of cities with more than 100,000 residents. The estimates represent the average annual exposure level of the average urban resident to outdoor particulate matter. The state of a country's technology and pollution controls is an important determinant of particulate matter concentrations.
  • Proportion of land and marine area under protection: Terrestrial and marine areas protected to total territorial area, percentage.
  • Endangered species protection: Percent of CITES reporting requirements met
    Units: Percent of Requirements Met
    Units: Countries that have not ratified the CITES convention are recorded as having zero percent of their requirements met.
  • Climate change > CO2 emissions from other sectors, excluding residential buildings and commercial and public services > Million metric tons: CO2 emissions from other sectors, excluding residential buildings and commercial and public services (million metric tons). CO2 emissions from other sectors, less residential buildings and commercial and public services, contains the emissions from commercial/institutional activities, residential, agriculture/forestry, fishing and other emissions not specified elsewhere that are included in the IPCC Source/Sink Categories 1 A 4 and 1 A 5. In the 1996 IPCC Guidelines, the category also includes emissions from autoproducers in the commercial/residential/agricultural sectors that generate electricity and/or heat. The IEA data are not collected in a way that allows the energy consumption to be split by specific end-use and therefore, autoproducers are shown as a separate item (Unallocated Autoproducers).
  • Pollution perceptions > Urban discomfort from pollution: Dissatisfaction to Spend Time in the City. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "Are you feeling comfortable to spend time in the city because of the pollution?". The higher the value, the more survey respondents believe it is high in their country.
  • Biodiversity > GEF benefits index for biodiversity > 0 = no biodiversity potential to 100 = maximum per million: GEF benefits index for biodiversity (0 = no biodiversity potential to 100 = maximum). GEF benefits index for biodiversity is a composite index of relative biodiversity potential for each country based on the species represented in each country, their threat status, and the diversity of habitat types in each country. The index has been normalized so that values run from 0 (no biodiversity potential) to 100 (maximum biodiversity potential). Figures expressed per million population for the same year.
  • Sanitation > Population with improved sanitation > Rural: Proportion of the population using improved sanitation facilities, rural.
  • Water > Drinking water > Population with improved drinking water sources > Urban: Proportion of the population using improved drinking water sources, urban.
  • Pollution perceptions > Waste management satisfaction: Garbage Disposal Satisfaction. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "How satisfied are you with a garbage disposal in the city?". The higher the value, the more survey respondents believe it is high in their country.
  • Wildness: Percent of land area having very low anthropogenic impact
    Units: Percent of Land Area
    Units: Global grids for population (GPW), land use (USGS AVHRR based classification from EROS data center), VMAP roads, VMAP railways, VMAP coastlines, VMAP major rivers and the stable lights data were all scored for "wildness". The scores were aggregated and normalized.
  • Forest area > Sq. km per 1000: Forest area is land under natural or planted stands of trees, whether productive or not. Figures expressed per thousand population for the same year.
  • Threatened species > Mammal: Number of threatened mammal species (1997)
  • Climate change > CO2 emissions from residential buildings and commercial and public services > Million metric tons: CO2 emissions from residential buildings and commercial and public services (million metric tons). CO2 emissions from residential buildings and commercial and public services contains all emissions from fuel combustion in households. This corresponds to IPCC Source/Sink Category 1 A 4 b. Commercial and public services includes emissions from all activities of ISIC Divisions 41, 50-52, 55, 63-67, 70-75, 80, 85, 90-93 and 99.
  • Pollution > Carbon dioxide 1999: 1999 total CO2 emissions from fossil-fuel burning, cement production, and gas flaring. Emissions are expressed in thousand metric tons of carbon (not CO2).
  • Breeding birds threatened: Percentage of breeding birds threatened
    Units: Percent of Breeding Birds
    Units: The number of bird species threatened divided by known bird species in the country, expressed as a percentage.
  • Climate change > CO2 emissions from gaseous fuel consumption > Kt: CO2 emissions from gaseous fuel consumption (kt). Carbon dioxide emissions from liquid fuel consumption refer mainly to emissions from use of natural gas as an energy source.
  • Climate change > CO2 emissions from solid fuel consumption > Kt: CO2 emissions from solid fuel consumption (kt). Carbon dioxide emissions from solid fuel consumption refer mainly to emissions from use of coal as an energy source.
  • Climate change > CO2 emissions from liquid fuel consumption > Kt per 1000: CO2 emissions from liquid fuel consumption (kt). Carbon dioxide emissions from liquid fuel consumption refer mainly to emissions from use of petroleum-derived fuels as an energy source. Figures expressed per thousand population for the same year.
  • Climate change > CO2 emissions from solid fuel consumption > Kt per 1000: CO2 emissions from solid fuel consumption (kt). Carbon dioxide emissions from solid fuel consumption refer mainly to emissions from use of coal as an energy source. Figures expressed per thousand population for the same year.
  • Climate change > CO2 emissions from gaseous fuel consumption > Kt per 1000: CO2 emissions from gaseous fuel consumption (kt). Carbon dioxide emissions from liquid fuel consumption refer mainly to emissions from use of natural gas as an energy source. Figures expressed per thousand population for the same year.
  • Climate change > Other greenhouse gas emissions, HFC, PFC and SF6 > Thousand metric tons of CO2 equivalent per million: Other greenhouse gas emissions, HFC, PFC and SF6 (thousand metric tons of CO2 equivalent). Other greenhouse gas emissions are by-product emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. Figures expressed per million population for the same year.
  • Sanitation > Population with improved sanitation > Urban: Proportion of the population using improved sanitation facilities, urban.
  • Urban SO2 concentration: Urban SO2 concentration
    Units: Micrograms/m3
    Units: The values were originally collected at the city level. Each nation varied in terms of the number of cities reported, so this data should be used with some caution. Within each country the values have been normalized by city population for the year 1995, then added together to obtain the total concentration for the given country.
  • Water > Proportion of marine area under protection: Marine areas protected to territorial waters, percentage.
  • Pollution > Carbon dioxide 1999 per 1000: 1999 total CO2 emissions from fossil-fuel burning, cement production, and gas flaring. Emissions are expressed in thousand metric tons of carbon (not CO2). Figures expressed per thousand population for the same year.
  • Freshwater > Withdrawal per million: . Figures expressed per million population for the same year.
  • Water > Salinisation: Electrical conductivity
    Units: Micro-Siemens/Centimeter
    Units: The country values represent averages of the station-level values for the three year time period 1994-96, except where data were only available for an earlier time period (1988-1993). The number of stations per country varies depending on country size; number of water bodies; and level of participation in the GEMS monitoring system.
  • Fertiliser > Consumption: Fertilizer consumption per hectare of arable land
    Units: Hundreds Grams/Hectare of Arable Land
  • Urban NO2 concentration: Urban NO2 concentration
    Units: Micrograms/m3
    Units: The values were originally collected at the city level. Each nation varied in terms of the number of cities reported, so this data should be used with some caution. Within each country the values have been normalized by city population for the year 1995, then added together to obtain the total concentration for the given country.
  • Non-wildness: Percent of land area having very high anthropogenic impact
    Units: Percent of Land Area
    Units: Global grids for population (GPW), land use (USGS AVHRR based classification from EROS data center), VMAP roads, VMAP railways, VMAP coastlines, VMAP major rivers and the stable lights data were all scored for "wildness". The scores were aggregated and normalized.
  • Climate change > CO2 emissions from residential buildings and commercial and public services > % of total fuel combustion: CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion). CO2 emissions from residential buildings and commercial and public services contains all emissions from fuel combustion in households. This corresponds to IPCC Source/Sink Category 1 A 4 b. Commercial and public services includes emissions from all activities of ISIC Divisions 41, 50-52, 55, 63-67, 70-75, 80, 85, 90-93 and 99.
  • Water pollution > Clay and glass industry > % of total BOD emissions: Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: stone, ceramics, and glass (36). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Climate change > CO2 emissions from residential buildings and commercial and public services > Million metric tons per million: CO2 emissions from residential buildings and commercial and public services (million metric tons). CO2 emissions from residential buildings and commercial and public services contains all emissions from fuel combustion in households. This corresponds to IPCC Source/Sink Category 1 A 4 b. Commercial and public services includes emissions from all activities of ISIC Divisions 41, 50-52, 55, 63-67, 70-75, 80, 85, 90-93 and 99. Figures expressed per million population for the same year.
  • PM10 > Country level > Micrograms per cubic meter: Particulate matter concentrations refer to fine suspended particulates less than 10 microns in diameter (PM10) that are capable of penetrating deep into the respiratory tract and causing significant health damage. Data for countries and aggregates for regions and income groups are urban-population weighted PM10 levels in residential areas of cities with more than 100,000 residents. The estimates represent the average annual exposure level of the average urban resident to outdoor particulate matter. The state of a countryÂ’s technology and pollution controls is an important determinant of particulate matter concentrations.
  • Pollution perceptions > Green space and parks dissatisfaction: Dissatisfaction with Green and Parks in the City. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "How satisfied are you with green and parks in the city?". The higher the value, the more survey respondents believe it is high in their country.
  • Organic water pollutant > BOD emissions > Kg per day per worker: Emissions per worker are total emissions of organic water pollutants divided by the number of industrial workers. Organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Climate change > CO2 emissions from other sectors, excluding residential buildings and commercial and public services > % of total fuel combustion: CO2 emissions from other sectors, excluding residential buildings and commercial and public services (% of total fuel combustion). CO2 emissions from other sectors, less residential buildings and commercial and public services, contains the emissions from commercial/institutional activities, residential, agriculture/forestry, fishing and other emissions not specified elsewhere that are included in the IPCC Source/Sink Categories 1 A 4 and 1 A 5. In the 1996 IPCC Guidelines, the category also includes emissions from autoproducers in the commercial/residential/agricultural sectors that generate electricity and/or heat. The IEA data are not collected in a way that allows the energy consumption to be split by specific end-use and therefore, autoproducers are shown as a separate item (Unallocated Autoproducers).
  • Climate change > CO2 emissions from electricity and heat production, total > % of total fuel combustion: CO2 emissions from electricity and heat production, total (% of total fuel combustion). CO2 emissions from electricity and heat production is the sum of three IEA categories of CO2 emissions: (1) Main Activity Producer Electricity and Heat which contains the sum of emissions from main activity producer electricity generation, combined heat and power generation and heat plants. Main activity producers (formerly known as public utilities) are defined as those undertakings whose primary activity is to supply the public. They may be publicly or privately owned. This corresponds to IPCC Source/Sink Category 1 A 1 a. For the CO2 emissions from fuel combustion (summary) file, emissions from own on-site use of fuel in power plants (EPOWERPLT) are also included. (2) Unallocated Autoproducers which contains the emissions from the generation of electricity and/or heat by autoproducers. Autoproducers are defined as undertakings that generate electricity and/or heat, wholly or partly for their own use as an activity which supports their primary activity. They may be privately or publicly owned. In the 1996 IPCC Guidelines, these emissions would normally be distributed between industry, transport and "other" sectors. (3) Other Energy Industries contains emissions from fuel combusted in petroleum refineries, for the manufacture of solid fuels, coal mining, oil and gas extraction and other energy-producing industries. This corresponds to the IPCC Source/Sink Categories 1 A 1 b and 1 A 1 c. According to the 1996 IPCC Guidelines, emissions from coke inputs to blast furnaces can either be counted here or in the Industrial Processes source/sink category. Within detailed sectoral calculations, certain non-energy processes can be distinguished. In the reduction of iron in a blast furnace through the combustion of coke, the primary purpose of the coke oxidation is to produce pig iron and the emissions can be considered as an industrial process. Care must be taken not to double count these emissions in both Energy and Industrial Processes. In the IEA estimations, these emissions have been included in this category.
  • Water pollution > Textile industry > % of total BOD emissions: Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: textiles (32). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Climate change > CO2 emissions from liquid fuel consumption > % of total: CO2 emissions from liquid fuel consumption (% of total). Carbon dioxide emissions from liquid fuel consumption refer mainly to emissions from use of petroleum-derived fuels as an energy source.
  • Climate change > CO2 emissions from gaseous fuel consumption > % of total: CO2 emissions from gaseous fuel consumption (% of total). Carbon dioxide emissions from liquid fuel consumption refer mainly to emissions from use of natural gas as an energy source.
  • Climate change > CO2 emissions from solid fuel consumption > % of total: CO2 emissions from solid fuel consumption (% of total). Carbon dioxide emissions from solid fuel consumption refer mainly to emissions from use of coal as an energy source.
  • Climate change > Other greenhouse gas emissions, HFC, PFC and SF6 > Thousand metric tons of CO2 equivalent: Other greenhouse gas emissions, HFC, PFC and SF6 (thousand metric tons of CO2 equivalent). Other greenhouse gas emissions are by-product emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride.
  • Water > Drinking water > Population with improved sanitation > Rural: Proportion of the population using improved sanitation facilities, rural.
  • Water > Suspended solids: Suspended solids
    Units: Natural Log of Milligrams/Liter
    Units: The country values represent averages of the station-level values for the three year time period 1994-96, exceptwhere data were only available for an earlier time period (1988-1993). The number of stations per country varies depending on country size; number of bodies of water; and level of participation in the GEMS monitoring system. Data from "The Wellbeing of Nations" included a smaller subset of stations representing outfalls of majorwatersheds. An analysis of a sample of countries with numerous stations found that the data for stations in the subset is broadly comparable to the data for all GEMS stations in those countries. The data in this table was transformed using the natural logarithm.
  • Pollution > Greenhouse gas emissions > United Nations Framework Convention on Climate Change sign date: Signature.
  • Forest area > % of land area: Forest area is land under natural or planted stands of trees, whether productive or not.
  • Water pollution > Metal industry > % of total BOD emissions: Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: primary metals (ISIC division 37). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Climate change > CO2 emissions from liquid fuel consumption > Kt: CO2 emissions from liquid fuel consumption (kt). Carbon dioxide emissions from liquid fuel consumption refer mainly to emissions from use of petroleum-derived fuels as an energy source.
  • Water pollution > Food industry > % of total BOD emissions: Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: food and beverages (31). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Adjusted savings > Particulate emission damage > % of GNI: Particulate emissions damage is calculated as the willingness to pay to avoid mortality attributable to particulate emissions.
  • Water pollution > Wood industry > % of total BOD emissions: Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: wood (33). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Water pollution > Other industry > % of total BOD emissions: Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: other (38 and 39). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Water > Phosphorus concentration: Phosphorus concentration
    Units: Milligrams/Liter
    Units: The country values represent averages of the station-level values for the three year time period 1994-96, except where data were only available for an earlier time period (1988-1993). The number of stations per country varies depending on country size; number of bodies of water; and level of participation in the GEMS monitoring system. The data from "The Wellbeing of Nations" included a smaller subset of stations representing outfalls of major watersheds. An analysis of a sample of countries with numerous stations found that the data for stations in the subset is broadly comparable to the data for all GEMS stations in those countries.
  • Pollution perceptions > Green space and parks satisfaction: Quality of Green and Parks. Based on 0-50 contributions for Albania, Algeria, Argentina and 86 more countries and over 100 contributions for Australia, Canada, China and 9 more countries and 50-100 contributions for Brazil, Bulgaria, Greece and 12 more countries. The surveys were conducted by numbeo.com from January, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "How satisfied are you with green and parks in the city?". The higher the value, the more survey respondents believe it is high in their country.
  • Water pollution > Paper and pulp industry > % of total BOD emissions: Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: paper and pulp (34). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • Water pollution > Chemical industry > % of total BOD emissions: Industry shares of emissions of organic water pollutants refer to emissions from manufacturing activities as defined by two-digit divisions of the International Standard Industrial Classification (ISIC), revision 2: chemicals (35). Emissions of organic water pollutants are measured by biochemical oxygen demand, which refers to the amount of oxygen that bacteria in water will consume in breaking down waste. This is a standard water-treatment test for the presence of organic pollutants.
  • International agreements > Signed but not ratified: The various international environmental agreements which a country has signed but not ratified. Agreements are listed in alphabetical order by the abbreviated form of the full name.
  • Marine protected areas > % of territorial waters: Marine protected areas (% of territorial waters). Marine protected areas are areas of intertidal or subtidal terrain--and overlying water and associated flora and fauna and historical and cultural features--that have been reserved by law or other effective means to protect part or all of the enclosed environment.
STAT Burma Iran HISTORY
Climate change > CO2 emissions from electricity and heat production, total > Million metric tons 2.56
Ranked 101st.
165.21
Ranked 16th. 65 times more than Burma

Climate change > CO2 emissions from electricity and heat production, total > Million metric tons per million 0.0489
Ranked 123th.
2.19
Ranked 53th. 45 times more than Burma

Current issues deforestation; industrial pollution of air, soil, and water; inadequate sanitation and water treatment contribute to disease air pollution, especially in urban areas, from vehicle emissions, refinery operations, and industrial effluents; deforestation; overgrazing; desertification; oil pollution in the Persian Gulf; wetland losses from drought; soil degradation (salination); inadequate supplies of potable water; water pollution from raw sewage and industrial waste; urbanization
Ecological footprint 1.07
Ranked 107th.
2.47
Ranked 63th. 2 times more than Burma
Forest area > Sq. km > Per capita 6.38 km² per 1,000 people
Ranked 66th. 4 times more than Iran
1.62 km² per 1,000 people
Ranked 123th.

Marine fish catch 695,904 tons
Ranked 19th. 3 times more than Iran
233,495 tons
Ranked 39th.
Marine fish catch per 1000 14.52 tons
Ranked 35th. 4 times more than Iran
3.6 tons
Ranked 68th.
Pollution perceptions > Air pollution 84.62
Ranked 1st.
89.51
Ranked 1st. 6% more than Burma
Pollution perceptions > Air quality 15.38
Ranked 2nd. 47% more than Iran
10.49
Ranked 59th.
Pollution perceptions > Clean water 41.67
Ranked 1st. 1% more than Iran
41.15
Ranked 33th.
Pollution perceptions > Drinking water pollution 63.89
Ranked 1st. 21% more than Iran
52.66
Ranked 18th.
Pollution perceptions > Water pollution 58.33
Ranked 2nd.
58.85
Ranked 27th. 1% more than Burma
Proportion of land area under protection 7.28%
Ranked 146th. 2% more than Iran
7.16%
Ranked 148th.

Total renewable water resources 1,045.6 cu km
Ranked 5th. 8 times more than Iran
137.5 cu km
Ranked 4th.
Water > Severe water stress 0.0
Ranked 94th.
87.5
Ranked 15th.
CFC > Consumption 61.54
Ranked 88th.
480,229
Ranked 6th. 7804 times more than Burma
Pollution perceptions > Noise and light pollution 34.38
Ranked 2nd.
61.5
Ranked 16th. 79% more than Burma
Biodiversity > Mammal species, threatened 46
Ranked 13th. 3 times more than Iran
17
Ranked 47th.
Pollution perceptions > Drinking water quality 36.11
Ranked 2nd.
47.34
Ranked 42nd. 31% more than Burma
CO2 emissions > Kt 9,450.54 kt
Ranked 92nd.
381,362.3 kt
Ranked 12th. 40 times more than Burma

Pollution perceptions > Pollution index 86.93
Ranked 1st. 1% more than Iran
86.49
Ranked 3rd.
Water > Drinking water > Population with improved drinking water sources > Urban and rural 84.13
Ranked 145th.
95.28
Ranked 99th. 13% more than Burma

National parks > Number of parks 9
Ranked 19th.
28
Ranked 11th. 3 times more than Burma
Climate change > CO2 emissions > Metric tons per capita 0.173
Ranked 176th.
7.68
Ranked 41st. 44 times more than Burma

Biodiversity > Bird species, threatened 44
Ranked 19th. Twice as much as Iran
22
Ranked 46th.
Carbon efficiency 0.42 CO2 emissions/$ GDP
Ranked 113th.
2.36 CO2 emissions/$ GDP
Ranked 28th. 6 times more than Burma
CO2 emissions > Kt per 1000 0.191 kt
Ranked 166th.
5.56 kt
Ranked 61st. 29 times more than Burma

Total renewable water resources per million 21.82 cu km
Ranked 4th. 10 times more than Iran
2.2 cu km
Ranked 18th.
SO2 emissions per populated area 90 thousand metric tons/squ
Ranked 126th.
490 thousand metric tons/squ
Ranked 78th. 5 times more than Burma
Biodiversity > Fish species, threatened 40
Ranked 47th. 29% more than Iran
31
Ranked 65th.
Climate change > CO2 emissions > Kt 8,995.15
Ranked 100th.
571,611.96
Ranked 8th. 64 times more than Burma

CO2 emissions > Kt > Per capita 0.191 kt per 1,000 people
Ranked 170th.
5.74 kt per 1,000 people
Ranked 62nd. 30 times more than Burma

Pollution perceptions > Waste management dissatisfaction 87.5
Ranked 1st. 49% more than Iran
58.67
Ranked 25th.
Water > Percent of water resources used 2.85%
Ranked 86th.
67.85%
Ranked 13th. 24 times more than Burma

Pollution > Ozone depleting substance consumption 5.75
Ranked 98th.
377.58
Ranked 19th. 66 times more than Burma

NOx emissions per populated area 0.19 thousand metric tons/squ
Ranked 87th. 58% more than Iran
0.12 thousand metric tons/squ
Ranked 116th.
Biodiversity richness 2
Ranked 13th. The same as Iran
2
Ranked 23th.
Water > Dissolved oxygen concentration 4.83 mls/litre
Ranked 132nd.
10.57 mls/litre
Ranked 12th. 2 times more than Burma
Climate change > CO2 emissions > Kt per 1000 0.173
Ranked 176th.
7.68
Ranked 41st. 44 times more than Burma

Forest area > Sq. km 322,220 km²
Ranked 20th. 3 times more than Iran
110,750 km²
Ranked 48th.

Sanitation > Population with improved sanitation > Urban and rural 77.31
Ranked 116th.
99.59
Ranked 41st. 29% more than Burma

Pollution perceptions > Clean, tidy cities 21.88
Ranked 2nd.
36.54
Ranked 45th. 67% more than Burma
Pollution > Ozone depleting substance consumption per million people 0.11
Ranked 153th.
5.01
Ranked 49th. 46 times more than Burma

Water > Availability 20.06 thousand cubic metres
Ranked 27th. 32 times more than Iran
0.63 thousand cubic metres
Ranked 116th.
Water > Drinking water > Population with improved drinking water sources > Rural 79.34
Ranked 135th.
90.29
Ranked 101st. 14% more than Burma

Biodiversity > Plant species > Higher, threatened 46
Ranked 54th. 23 times more than Iran
2
Ranked 157th.
Threatened species 98
Ranked 18th. 81% more than Iran
54
Ranked 37th.
Pollution perceptions > Urban comfort > Low pollution 22.5
Ranked 2nd. 18% more than Iran
19.03
Ranked 59th.
CFC > Consumption per 1000 0.00132
Ranked 94th.
7.68
Ranked 13th. 5822 times more than Burma
Protected area 0.3%
Ranked 134th.
5.1%
Ranked 77th. 17 times more than Burma
Biodiversity > GEF benefits index for biodiversity > 0 = no biodiversity potential to 100 = maximum 10.02
Ranked 30th. 37% more than Iran
7.31
Ranked 39th.

Pollution perceptions > Dirty, untidy cities 78.12
Ranked 1st. 23% more than Iran
63.46
Ranked 15th.
Pollution perceptions > Free of noise and light pollution 65.62
Ranked 1st. 70% more than Iran
38.5
Ranked 44th.
Acidification 0.77%
Ranked 42nd.
0.0
Ranked 66th.
Freshwater > Withdrawal 33.23
Ranked 20th.
72.88
Ranked 11th. 2 times more than Burma
Pollution > PM10, country level > Micrograms per cubic meter 39.84
Ranked 56th.
55.62
Ranked 33th. 40% more than Burma

Proportion of land and marine area under protection 5.97%
Ranked 141st.
6.96%
Ranked 130th. 17% more than Burma

Endangered species protection 0.0
Ranked 109th.
69.6%
Ranked 71st.
Climate change > CO2 emissions from other sectors, excluding residential buildings and commercial and public services > Million metric tons 0.74
Ranked 65th.
11.69
Ranked 11th. 16 times more than Burma

Pollution perceptions > Urban discomfort from pollution 77.5
Ranked 1st.
80.97
Ranked 1st. 4% more than Burma
Biodiversity > GEF benefits index for biodiversity > 0 = no biodiversity potential to 100 = maximum per million 0.196
Ranked 111th. 95% more than Iran
0.101
Ranked 133th.

Sanitation > Population with improved sanitation > Rural 74.12%
Ranked 107th.
98.66%
Ranked 39th. 33% more than Burma

Water > Drinking water > Population with improved drinking water sources > Urban 94.02
Ranked 146th.
97.51
Ranked 109th. 4% more than Burma

Pollution perceptions > Waste management satisfaction 12.5
Ranked 2nd.
41.33
Ranked 35th. 3 times more than Burma
Wildness 15.66%
Ranked 54th. 6 times more than Iran
2.53%
Ranked 75th.
Forest area > Sq. km per 1000 6.42 km²
Ranked 65th. 4 times more than Iran
1.58 km²
Ranked 123th.

Threatened species > Mammal 31
Ranked 21st. 55% more than Iran
20
Ranked 34th.
Climate change > CO2 emissions from residential buildings and commercial and public services > Million metric tons 0.0
Ranked 136th.
122.64
Ranked 7th.

Pollution > Carbon dioxide 1999 2,511
Ranked 91st.
82,269
Ranked 16th. 33 times more than Burma
Breeding birds threatened 4.04%
Ranked 46th. About the same as Iran
4.02%
Ranked 47th.
Climate change > CO2 emissions from gaseous fuel consumption > Kt 4,143.71
Ranked 78th.
294,262.08
Ranked 4th. 71 times more than Burma

Climate change > CO2 emissions from solid fuel consumption > Kt 685.73
Ranked 83th.
5,401.49
Ranked 55th. 8 times more than Burma

Climate change > CO2 emissions from liquid fuel consumption > Kt per 1000 0.0748
Ranked 185th.
3.32
Ranked 49th. 44 times more than Burma

Climate change > CO2 emissions from solid fuel consumption > Kt per 1000 0.0132
Ranked 99th.
0.0725
Ranked 84th. 5 times more than Burma

Climate change > CO2 emissions from gaseous fuel consumption > Kt per 1000 0.0798
Ranked 97th.
3.95
Ranked 18th. 50 times more than Burma

Climate change > Other greenhouse gas emissions, HFC, PFC and SF6 > Thousand metric tons of CO2 equivalent per million 0.0
Ranked 107th.
41.59
Ranked 64th.

Sanitation > Population with improved sanitation > Urban 83.87
Ranked 120th.
100
Ranked 9th. 19% more than Burma

Urban SO2 concentration 135.07 micrograms/m3
Ranked 10th.
209 micrograms/m3
Ranked 1st. 55% more than Burma
Water > Proportion of marine area under protection 0.217%
Ranked 151st.
2.2%
Ranked 102nd. 10 times more than Burma

Pollution > Carbon dioxide 1999 per 1000 0.0524
Ranked 155th.
1.27
Ranked 67th. 24 times more than Burma
Freshwater > Withdrawal per million 0.686
Ranked 37th.
1.11
Ranked 18th. 61% more than Burma
Water > Salinisation 594.19
Ranked 72nd. 42% more than Iran
419.64
Ranked 92nd.
Fertiliser > Consumption 179.94 hundred grams/hectare
Ranked 100th.
743.9 hundred grams/hectare
Ranked 67th. 4 times more than Burma
Urban NO2 concentration 65.36 micrograms/m3
Ranked 31st. 96% more than Iran
33.3 micrograms/m3
Ranked 113th.
Non-wildness 1.73%
Ranked 87th. 57% more than Iran
1.1%
Ranked 97th.
Climate change > CO2 emissions from residential buildings and commercial and public services > % of total fuel combustion 0.0
Ranked 136th.
23.54%
Ranked 9th.

Water pollution > Clay and glass industry > % of total BOD emissions 0.4%
Ranked 9th.
0.66%
Ranked 3rd. 65% more than Burma

Climate change > CO2 emissions from residential buildings and commercial and public services > Million metric tons per million 0.0
Ranked 136th.
1.63
Ranked 10th.

Freshwater > Withdrawal > Industrial 1%
Ranked 99th.
2%
Ranked 87th. Twice as much as Burma
Freshwater > Withdrawal > Domestic 1%
Ranked 122nd.
7%
Ranked 88th. 7 times more than Burma
PM10 > Country level > Micrograms per cubic meter 68.8 mcg/m³
Ranked 39th. 19% more than Iran
57.8 mcg/m³
Ranked 54th.

Pollution perceptions > Green space and parks dissatisfaction 68.75
Ranked 1st. 17% more than Iran
59
Ranked 11th.
Organic water pollutant > BOD emissions > Kg per day per worker 0.18 kg per day per worker
Ranked 21st. 20% more than Iran
0.15 kg per day per worker
Ranked 25th.

Climate change > CO2 emissions from other sectors, excluding residential buildings and commercial and public services > % of total fuel combustion 8.97%
Ranked 15th. 4 times more than Iran
2.24%
Ranked 66th.

Climate change > CO2 emissions from electricity and heat production, total > % of total fuel combustion 31.03%
Ranked 95th.
31.71%
Ranked 92nd. 2% more than Burma

Water pollution > Textile industry > % of total BOD emissions 2.94%
Ranked 47th.
9.48%
Ranked 20th. 3 times more than Burma

Climate change > CO2 emissions from liquid fuel consumption > % of total 43.21%
Ranked 145th.
43.21%
Ranked 144th. The same as Burma

Climate change > CO2 emissions from gaseous fuel consumption > % of total 46.07%
Ranked 19th.
51.48%
Ranked 15th. 12% more than Burma

Climate change > CO2 emissions from solid fuel consumption > % of total 7.62%
Ranked 77th. 8 times more than Iran
0.945%
Ranked 103th.

Climate change > Other greenhouse gas emissions, HFC, PFC and SF6 > Thousand metric tons of CO2 equivalent 0.0
Ranked 107th.
3,097
Ranked 26th.

Water > Drinking water > Population with improved sanitation > Rural 74.12
Ranked 107th.
98.66
Ranked 39th. 33% more than Burma

Water > Suspended solids 6.41 mls/litre
Ranked 27th. 8% more than Iran
5.92 mls/litre
Ranked 40th.
Pollution > Greenhouse gas emissions > United Nations Framework Convention on Climate Change sign date June 11, 1992 June 14, 1992
Forest area > % of land area 49% of land area
Ranked 41st. 7 times more than Iran
6.77% of land area
Ranked 160th.

Water pollution > Metal industry > % of total BOD emissions 56.46%
Ranked 1st. 4 times more than Iran
15.55%
Ranked 3rd.

Climate change > CO2 emissions from liquid fuel consumption > Kt 3,887.02
Ranked 106th.
247,012.79
Ranked 11th. 64 times more than Burma

Water pollution > Food industry > % of total BOD emissions 14.94%
Ranked 50th.
46.67%
Ranked 18th. 3 times more than Burma

Adjusted savings > Particulate emission damage > % of GNI 0.59% of GNI
Ranked 57th.
0.79% of GNI
Ranked 40th. 34% more than Burma

Water pollution > Wood industry > % of total BOD emissions 1.66%
Ranked 37th. 91% more than Iran
0.87%
Ranked 29th.

Water pollution > Other industry > % of total BOD emissions 5.76%
Ranked 23th.
8.08%
Ranked 8th. 40% more than Burma

Water > Phosphorus concentration 0.31 mls/litre
Ranked 79th.
0.35 mls/litre
Ranked 65th. 13% more than Burma
Pollution perceptions > Green space and parks satisfaction 31.25
Ranked 2nd.
41
Ranked 49th. 31% more than Burma
Water pollution > Paper and pulp industry > % of total BOD emissions 4.6%
Ranked 52nd.
8.04%
Ranked 27th. 75% more than Burma

Water pollution > Chemical industry > % of total BOD emissions 13.24%
Ranked 10th. 24% more than Iran
10.66%
Ranked 10th.

Freshwater > Withdrawal > Agricultural 98%
Ranked 2nd. 8% more than Iran
91%
Ranked 28th.
International agreements > Signed but not ratified none of the selected agreements Environmental Modification, Law of the Sea, Marine Life Conservation
Marine protected areas > % of territorial waters 28.01%
Ranked 23th. 2295118 times more than Iran
1.22e-05%
Ranked 153th.

SOURCES: International Energy Agency; International Energy Agency. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; CIA World Factbooks 18 December 2003 to 28 March 2011; World Wide Fund for Nature (WWF), Living Planet Report 2000, Gland, Switzerland: 2000, and Redefining Progress.; World Development Indicators database; FAOSTAT on-line database; FAOSTAT on-line database. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; pollution; United Nations Statistics Division. Source tables; All CIA World Factbooks 18 December 2003 to 18 December 2008; Center for Environmental Systems Research, University of Kassel, WaterGap 2.1, 2000 via ciesin.org; UNEP, Production and Consumption of Ozone Depleting Substances, 1986-1998, October 1999. via ciesin.org; United Nations Environmental Program and the World Conservation Monitoring Centre; United Nations Statistics Division. Source tables; Wikipedia: List of national parks (Africa); Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Tennessee, United States.; United Nations Environmental Program and the World Conservation Monitoring Centre; Carbon Dioxide Information Analysis Center; World Development Indicators database. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; All CIA World Factbooks 18 December 2003 to 18 December 2008. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; Intergovernmental Panel on Climate Change: Special Report on Emissions Scenarios, Data Version 1.1, B1Illustrative Marker Scenario with model IMAGE; Froese, R. and Pauly, D. (eds). 2008. FishBase database, www.fishbase.org.; United Nations Statistics Division. Source tables; United Nations Statistics Division. Source tables; United Nations Environment Programme (UNEP), Global Environmental Monitoring System/Water Quality Monitoring System, with data for an additional 29 countries from Prescott-Allen,R. The Well being of Nations, Washington, DC: Island Press, 2001; Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Tennessee, United States. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; United Nations Statistics Division. Source tables; United Nations Statistics Division. Source tables. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; Center for Environmental Systems Research, University of Kassel, WaterGAP 2.1B, 2001 via ciesin.org; United Nations Statistics Division. Source tables; United Nations World Statistics Pocketbook and Statistical Yearbook; UNEP, Production and Consumption of Ozone Depleting Substances, 1986-1998, October 1999. via ciesin.org. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; Jacaranda Atlas; Kiran Dev Pandey, Piet Buys, Ken Chomitz, and David Wheeler's, "Biodiversity Conservation Indicators: New Tools for Priority Setting at the Global Environment Facility" (2006).; Stockholm Environment Institute at York, Acidification in Developing Countries: Ecosystem Sensitivity and the Critical Loads Approach at the Global scale, 2000 via ciesin.org; World Bank, Development Research Group and Environment Department; United Nations Statistics Division. Source tables; Convention on International Trade in Endangered Species of Wild Fauna and Flora, Report on National Reports Required Under Article VIII, Paragraph 7(a), of the Convention, Eleventh Meeting of the Conference of the Parties, Gigiri, Kenya, April 2000; Kiran Dev Pandey, Piet Buys, Ken Chomitz, and David Wheeler's, "Biodiversity Conservation Indicators: New Tools for Priority Setting at the Global Environment Facility" (2006). Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; United Nations Statistics Division. Source tables; United Nations Statistics Division. Source tables; Wild Areas Project (WAP), joint Wildlife Conservation Society (WCS) and CIESIN project to map the lastwild places on the earth's surface. via ciesin.org; Gregg Marland, Tom Boden, and Bob Andres, University of North Dakota, via net publication; 2000 IUCN Red List, and World Resources Institute,World Resources 2000-2001, Washington, DC: WRI, 2000. Original sources: World Conservation Monitoring Center, IUCN-The World Conservation Union, Food and Agriculture Organization of the United Nations and other sources.; United Nations Statistics Division. Source tables; World Resources Institute, World Resources 1998-99; World Bank, World Development Indicators 2000; WHO,Air Management Information System-AMIS 2.0, 1998; and Global Urban Observatory, Citibase, 1999. via ciesin.org; United Nations Statistics Division. Source tables; Gregg Marland, Tom Boden, and Bob Andres, University of North Dakota, via net publication. Population figures from World Bank: (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.; World Bank, World Development Indicators 2001. Washington, DC: World Bank, 2001. via ciesin.org; Wild Areas Project (WAP), joint Wildlife Conservation Society (WCS) and CIESIN project to map the last wild places on the earth's surface. Accessed via ciesin.org; United Nations Statistics Division Original html; United Nations Environment Programme (UNEP), Global Environmental Monitoring System/Water Quality Monitoring System, with data for an additional 29 countries from Prescott-Allen, R. The Well being of Nations, Washington, DC: Island Press, 2001; Wikipedia: List of parties to the United Nations Framework Convention on Climate Change (List of parties) (Parties & Observers , UNFCCC, 1 June 2011)

Citation

Adblocker detected! Please consider reading this notice.

We've detected that you are using AdBlock Plus or some other adblocking software which is preventing the page from fully loading.

We don't have any banner, Flash, animation, obnoxious sound, or popup ad. We do not implement these annoying types of ads!

We need money to operate the site, and almost all of it comes from our online advertising.

Please add www.nationmaster.com to your ad blocking whitelist or disable your adblocking software.

×